
 Page 1/7

New approach for sensor simulation

for Hardware In the Loop test systems

Stephan Ahrends 1, Vineet Aggarwal 2, Rick Kuhlman 3, Mike Lyons 4

1: National Instruments Germany GmbH, Ganghofer Strasse 70b, Munich, Germany
2, 3, 4: National Instruments Corporation, 11500 N Mopac Expwy, Austin, TX 78759-3504

Abstract: Automatic test systems can evaluate the
functionality of measurement and/or control
hardware by simulating real world signals and
verifying the expected response. Simulation takes
the dynamics of real-world environments and models
them using software to test the performance of
critical system hardware components. Sensor
simulation is the process of providing realistic sensor
signals to the inputs of a device under test and
evaluating how a piece of equipment will respond
across a broad range of operating conditions. This
paper will discuss the benefits of sensor simulation,
and specifically reference the additional advantages
to using an FPGA-based implementation.

Keywords: Sensors, Simulation, FPGA, HiL

1. Introduction

The greatest benefit to simulating sensors is the
ability to push past the operational limits of a specific
environment and test fault conditions that would
otherwise be damaging or dangerous. Corrective
changes to system components can also be
implemented and tested without fear of destroying
expensive equipment. An engine control unit (ECU),
for example, can be verified without running an
actual engine at high temperatures for extended
periods of time. The signals being simulated can
range from simple analog waveforms to custom
digital protocols, and in the past, each type of sensor
required its own piece of custom hardware with a
dedicated microcontroller for concurrent simulation.
This architecture tends to be very costly and
expensive to maintain. By taking advantage of
inherent parallel processing, field-programmable
gate array (FPGA) hardware provides the
performance and flexibility to simultaneously
simulate a variety of sensors in real-time.

2. FPGA for Sensor Simulation

2.1 Benefits

FPGA-based hardware is ideal for sensor simulation,
primarily because of the ability to adapt to multiple
sensor types with precise timing requirements. Each
sensor output can be customized down to

nanoseconds, and various signals can be completely
synchronized to realistically create a specific state of
operation. In many cases, however, sensors function
independently and update at different rates. The true
parallel nature of FPGAs also allows dedicated
blocks of silicon to operate without any interference
from other parts of the application.

Deterministic operation is essential for sensor
simulation, in order to accurately characterize the
performance of the controller. A processor-based
approach will typically use a real-time operating
system to schedule and prioritize all parts of an
application, since only one operation can execute at
a time. Different tasks must compete for processor
time, and can often preempt one another. This can
severely affect the deterministic response required
when trying to simulate sensors. By embedding code
on an FPGA chip, sensor logic can achieve the
maximum level of determinism, with true hardware-
timed reliability.

While the majority of sensors produce an analog
signal based on their measurements, there are many
sensors that convey information digitally, using
methods like pulse width modulation or serialized
protocols. An FPGA-based approach can easily
integrate the processing required to generate
complex digital signals as well as arbitrary analog
waveforms without affecting the performance of
other tasks in the application. A common example is
SPI communication, in which sensors pass data
values serially at high-speeds. Each bit on the data
line is latched using a master clock line, and then
translated into engineering units based on the
specifications of the sensor. Other types of digital
output sensors could use I2C, RS-232 or even
custom digital protocols. FPGAs also include
embedded block RAM, in which look-up tables can
reside for translating sensor values into data all in
real-time. Once developed, the function blocks for
specific protocols can then be reused in different
parts of the FPGA application and none of the
processing required to simulate these digital sensors
will affect the update rates of other analog sensors
being simulated.

 Page 2/7

2.2 Challenges

As performance demands increase, many
applications will find that typical computer software is
no longer effective. When an application
necessitates increased speed and efficiency, many
engineers consider hardware implementations.
While there are obvious advantages to using FPGA
hardware for various sensor simulations, there is a
clear question of implementation for those who might
be inexperienced in FPGA programming.
Historically, FPGA technology has been limited to
hardware design engineers with in-depth knowledge
of hardware description languages (HDLs). Many
experts in the field of Automated Test Equipment
(ATE), however, have little or no background in
FPGA development, seldom having knowledge of
mainstream HDLs like Verilog or VHDL (VHSIC
Hardware Description Language). When it comes
time to start programming the FPGA, the need for
higher-level tools becomes quite apparent.
Traditionally, these test engineers did not have the
means to simulate a sensor output and may have
been forced to use the actual sensor for validating
controller prototypes. As FPGA technology grows in
popularity, industry needs to give domain experts
and design engineers alike a higher-level language
for programming FPGAs. Take, for example, the
different levels of abstraction for computer
programming, and notice how going from
programming in assembly to C++ and beyond has
enabled more people to create increasingly complex
software. Continued abstraction of hardware is
equally as crucial for continued innovation and
increased accessibility for a larger pool of potential
FPGA users.

2.3 Levels of Abstraction

There are some vendors in the marketplace who
have products tackling part of this software/hardware
abstraction issue. [1] FPGA vendors have tools for
generating VHDL IP, but they are still based on
current HDLs. Other vendors have created C-to-
VHDL converters, which are certainly a much-
needed step in the right direction. Many engineers
typically have at least a working knowledge of C-
style programming. Even though there are significant
differences in these converters and a typical C
language, the paradigm is familiar.

The most commonly used design ’style’ for
synthesizable VHDL models is what can be called
the ’dataflow’ style. A larger number of concurrent
VHDL statements and small processes connected
through signals are used to implement the desired
functionality. Reading and understanding dataflow
VHDL code is difficult since the concurrent
statements and processes do not execute in the
order they are written, but when any of their input

signals change value. It is not uncommon that to
extract the functionality of dataflow code, a block
diagram has to be drawn to indentify the dataflow
and dependencies between the statements. The
readability of dataflow VHDL code can compared to
an ordinary schematic where the wires connecting
the various blocks have been removed, and the
block inputs and outputs are just labeled with signal
names. [2]

Utilizing graphical programming, LabVIEW FPGA for
example is a function block, dataflow, graphical
programming language which is compiled for
FPGAs. FPGA implementations are often modeled
as a state diagram or flow chart for visualization
purposes. LabVIEW FPGA takes the next step by
allowing the FPGA to be actually programmed using
intuitive diagrams. This approach allows domain
experts or test engineers to configure and visualize
complex systems in hardware without any
knowledge of VHDL or C, while retaining the power
afforded by either. Layers of abstraction increase the
number of people that can take advantage of FPGA
technology for automated test application. With low-
level I/O details abstracted from the user, system
developers can focus on test algorithms and system-
level concerns. This means that simulating a sensor
with an FPGA does not have to include code for
communicating with a digital-to-analog converter
(DAC), or other code necessary to retrieve and
assert pre-defined test vectors. With higher level
languages, test engineers can spend more time on
the actual test, adding coverage and reliability, with
less time spent ironing out details of the sensor
simulation implementation itself.

Figure 1: FPGA block diagram with parallel loops

 Page 3/7

Figure 1 is an example of using a graphical
approach to FPGA programming.

The block diagram in Figure 1 shows three loops
running simultaneously in a single FPGA application.
The top loop is generating a sine wave signal using
a digital-to-analog converter (DAC) that updates
every microsecond. The middle loop, however, is
generating a user-defined waveform that is being
streamed across the PCI bus and updated at a user-
customizable rate. The third loop uses a timed loop
structure to execute once every 25ns, and generate
a pulse-width modulated signal. The duty cycle of
the output signal can be varied by changing high
pulse and low pulse parameters accordingly. While
each loop is running at completely independent
rates, they are all referencing the same register for a
synchronized stop condition. This shows how
multiple loops can access the same resource for
global parameterization.

3. Sensor Examples

For the following specific implementation examples
we will use LabVIEW FPGA as a higher-level
programming language for sensor simulation with
FPGAs. The hardware options for LabVIEW FPGA
include integrated analog and digital I/O, as well as
data communication circuitry and standard bus
interfaces. This section will focus on the
implementation of three different sensor types:
thermocouples, LVDTs (Linear Variable Differential
Transformers), and resolvers, while discussing
others at a high level.

A LabVIEW FPGA program is divided into two
applications, called VIs: the host VI and the FPGA
VI. The host VI runs in either a host PC or a real-
time system. Typically, the host stores test vectors,
implements a user-interface, and performs
preliminary floating point math before passing digital
data to the FPGA VI. The FPGA VI receives the
digital data representing the simulated signal,
performs various processing steps, and outputs the
correct voltage levels with tight control. The FPGA
may need to generate or receive excitation signals
which are often integrated in the final simulated
sensor signal. In addition, the FPGA chip can be
used to simulate noisy environments for realistic
conditions.

3.1 Simulating Thermocouples

Before simulating any type of sensor, we must
understand how the sensor works at its lowest level.
Thermocouples, for example, use the Seebeck
effect, which says that the junction of two dissimilar
metals creates a small passive voltage proportional
to temperature [3]. Figure 2 is a depiction of how

thermocouples work. Because of the robust
materials and absence of electronics, thermocouples
are extremely durable in harsh environments and
have the ability to measure extreme temperatures,
all without excitation. From a hardware standpoint,
simulating this sensor is particularly difficult because
it requires very small voltages. Most thermocouple
signals are in the range of -10 mV to 50 mV with a
resolution of roughly 50 µV to 100 µV per degree.
However, from the software side it is a matter of
outputting a simple DC, albeit low, voltage.

Figure 2: How thermocouples work

Keep in mind that this thermocouple sensor may be
part of a system with many other types of needed
sensors. It is very difficult to find one piece of
hardware that can supply large voltage ranges
needed for simulating sensors with excitation as well
as small voltage ranges needed for passive sensors
like thermocouples. Even a 16-bit output ranging
±10V can only achieve ~300 µV resolution, which is
unacceptable for thermocouples that might change
down to 10 µV per degree Celsius. In order to use
the same hardware for both types of output voltages,
it may be necessary to design an output attenuator
circuit, particularly for simulating thermocouples. For
ease of use, the attenuator could be as simple as a
passive resistor divider network. By necessity,
thermocouple inputs on a device under test (DUT)
have very high impedances. Therefore, the network
has little effect on the measurement quality.
Nevertheless, because of the inherent errors
associated with resistor networks in addition to the
errors associated with any piece of output hardware,
it is important to calibrate the output with a
thermocouple measurement device, correlating
output voltage to desired simulated temperatures.

Figure 3 is a block diagram of the different sensor
simulation system components. The host VI should
store the temperature profiles and test cases,
convert the desired temperatures into a raw binary
format according to the calibration tables, and pass
this to the FPGA hardware.

 Page 4/7

Figure 3: Thermocouple simulation system

The example implementation shown in Figure 4
receives a “Requested Temperature,” does the
necessary compensation and calibration, and
passes the final value to the FPGA through a
variable called TC Voltage. In this case, the host VI
allows for multiple thermocouple types and CJC
compensation if needed.

Figure 4: Host interface code for thermocouple
simulation

Figure 5 shows a loop in LabVIEW FPGA that
continuously polls the TCVoltage register and adds
the expected noise impairments before writing that
value to the digital-to-analog converter.

Figure 5: FPGA code for thermocouple simulation

The major benefit to simulating a thermocouple
signal is the ability to safely create harsh
environments when testing fault conditions. If the
unit under test was an engine control unit (ECU), for
example, we can test safety circuitry and see how
the controller responds without actually overheating
an engine.

3.2 Simulating Linear Variable Differential
Transformers (LVDT)

An LVDT is a sensor that incorporates a differential
transformer with a sliding magnetic core. Driven by
an AC (alternating current) excitation source, the
LVDT generates a pair of AC output signals that are
modulated according to the mechanical position
(displacement) of the core as shown in Figure 6a. [4]

Figure 6a: How LVDTs work [www.rdpe.com]

Figure 6b: Graph of the demodulated amplitude
signal as function of linear displacement changes.

The output signals can be demodulated to recover
the position information. The simulation of this
sensor might simply be the demodulated linear
signal shown in Figure 6b. However, this would only
be the case if the sensor already had onboard signal
conditioning. A more interesting simulation problem
would be a raw LVDT where one’s simulator takes in
an excitation AC signal, and outputs a scaled wave
according to the simulated linear displacement. We
have chosen to tackle this more complex situation in
the following implementation.

 Page 5/7

Figure 7 is a block diagram of the different sensor
simulation system components.

Figure 7: LVDT simulation system component

The ideal output of a LVDT without signal
conditioning is a scaled version of the excitation
signal. This scaling factor can be positive or negative
and is proportional to distance from the mechanical
middle of the device. The host computer passes the
displacement in the form of a scaling factor to
multiply with either the generated or real-world
excitation signal. The host VI uses inputs of position
and desired sensitivity, and initial scaling is done to
get the results to binary form. This is passed to the
FPGA through the “Scaling Factor” variable. Figure 8
is the graphical host interface code for LVDT
simulation.

Figure 8: Host interface code for LVDT simulation

On the FPGA the user can programmatically decide
whether to use internal or external excitation and
passes that to the multiplier. This applies the
appropriate scaling to the signal based on the
simulated displacement. The data is then passed to
the next iteration of the loop to be re-factored to 16
bits and asserted to an analog output channel. The
technique of passing the data to the next iteration is
LabVIEW’s method of pipelining for throughput.
Notice that while current iteration is outputting a
value, the FPGA is taking a new excitation voltage

and implementing scaling in parallel. This new data
is ready for the next iteration where it will be output.
VHDL programming requires specialized coding to
implement a pipeline, LabVIEW FPGA implements
with an intuitive data tunnel on each side of the loop.
Figure 9 is the graphical FPGA code for LVDT
simulation.

Figure 9: FPGA code for LVDT simulation

3.3 Simulating Resolvers

Being the analog counterpart to rotary encoders,
resolvers measure the absolute rotary position of a
rotating shaft. There are two fixed windings at right
angles and a third spinning winding which is excited
by some reference signal. [5] The reference signal
(R) is induced onto the fixed windings with a
magnitude representative of the third winding’s
angular position as it spins. Because the two fixed
output windings (S1, S2) are at right angles to each
other they produce a sine and cosine magnitudes
(as shown in Figure 10) which have a unique
combination at every given point in the rotation.

Figure 10: How resolvers work

 Page 6/7

The spinning winding is typically excited with a
reference signal of 115 Vrms at 60 Hz or 400 Hz (for
ground-referenced applications like manufacturing
machines) or 26 Vrms at 400 Hz (for non-referenced
applications like vehicles). Simulating these output
signals on an FPGA requires two output modulated
waves which correspond to the user-defined speed
and position of a simulated shaft. Figure 11 is a
block diagram of the different sensor simulation
system components.

Figure 11: Resolver simulation system components

In a deployed system, the two winding signals are
typically fed into a resolver-to-digital converter. This
device may be purchased off-the-shelf or integrated
into the DUT. Either way, there are specifications for
input voltages from the raw resolver signals.
Therefore, it is important to have a flexible platform
which can be used to serve multiple voltage level
considerations.

The host PC stores a library of motion profiles.
These profiles should contain an array of desired set
points simulating static angular displacements,
typical motion paths, corner cases, and out-of-spec
behavior. The host passes these test points to the
FPGA where the output signals on both windings are
calculated from the modulation of the test point with
the excitation signal. The host VI converts the
desired position in degrees to a binary scaling factor
for each winding (sine and cosine). These factors
are passed to the FPGA through the variable “Output
Scale Factor.” Figure 12 is the graphical host
interface code for resolver simulation.

Figure 12: Host interface code for resolver simulation

The FPGA receives scaling factors from the host and
multiplies them to the acquired external excitation.

Like the LVDT implementation, the output is
pipelined once for throughput. The FPGA could also
be utilized to add noise or other impairments to the
signal which might simulate the real deployed
environment more closely. Figure 13 is the graphical
FPGA code for resolver simulation.

Figure 13: FPGA code for resolver simulation

The three implemented systems are each analog
sensor simulations which are made possible by an
FPGA with the appropriate analog front-ends
attached. Sensors which only deal in digital signals
are even easier for FPGAs, because they require no
analog support. Encoders, Hall Effect Sensors, Cam
and Crank Sensors, or any sensors which transfers
data with some type of digital protocol (serial or
parallel) can be simulated on an FPGA.

4. Validation of Simulated Sensors

Simulation is only as beneficial as it matches the real
world properties. For simulated sensors this means
accuracy in timing and value. The use of simulated
sensors as a replacement of real ones makes it
therefore necessary to provide ways to validate
those properties.

There are basically three approaches to achieve this
validation.

(1) Asserting an input vector to the actual
algorithm being used and comparing the
output vector with the expected result vector.

(2) Take approach (1) and include the real I/O
interfaces with external stimulus and
measurements.

(3) The actual use of the simulated sensor with
real I/O together with the real DUT.

Approach (1) is the easiest one if the environment
which is being used to define the FPGA
implementation also provides a test framework to
assert input vectors and read back the output

 Page 7/7

vectors. Another benefit is the fact that no additional
hardware is required.

Approach (2) accounts for the fact, that using real
I/O might have a significant effect on the
performance of the simulation. Algorithms being
used typically rely on ideal I/O converter properties.
It helps for example in finding limitations in timing
accuracy as it shows latencies in the I/O process.

Approach (3) finally shows, if the simulated sensor is
accepted by the DUT instead of the real one.
Today’s control units use a lot of very advanced
diagnostic functions to determine the quality of the
system status. If they detect a failure or inadequate
performance of a sensor, they might stop working.

5. Economical benefits

With the increasing movement to commercial-off-the-
shelf (COTS) hardware, FPGAs have become even
more popular for sensor simulation. It is important to
consider connectivity to I/O pins for sending data to
and from the chip itself, when using FPGAs for
sensor simulation. Commercially available FPGA
hardware with integrated I/O, PC-bus interfaces and
signal conditioning has dramatically reduced
development times and alleviated many of the
hidden costs associated with custom hardware
design. COTS hardware offers PC-buses like PCI
and PXIe for a host application to interface with the
FPGA application. Direct-Memory-Access (DMA)
channels are also included for streaming data across
these high-speed buses, with rates up to several
100MB/sec. In order to interact with the outside
world, COTS FPGA hardware typically integrates I/O
components like analog-to-digital converters (ADCs),
digital-to-analog converters (DACs), and digital line
drivers. Combining off the shelf hardware with higher
level programming software will also abstract out the
communication logic needed to interface with
external components, and replace it with graphical
I/O nodes and DMA transfer FIFOs as shown in the
earlier implementation examples. Shortening a
product’s time-to-market is a major factor when
simulating sensors, and using commercially
available FPGA hardware ensures that prototyping
and test system development time will not be the
bottleneck.

6. Conclusion

Sensor simulation allows test engineers to
incorporate real-world signals into automated test
systems to simulate a broad range of operating
environments. Once all functionality has been
verified, using the simulated environment the critical
hardware under test can then be connected to the
actual system plant for final deployment. The flexible

nature of FPGAs with true parallel operation, make
them ideal for simultaneously simulating multiple
types of sensors. Using a higher-level programming
language allows experts across any industry to take
advantage of FPGA technology, and COTS FPGA
hardware enables high-performance prototypes and
test systems to be developed quickly and easily,
without prior experience in FPGA hardware design.

7. Acknowledgement

The authors acknowledge the contribution of their
colleagues to this work.

8. References

[1] Tom Williams: FPGA Tools Target Higher Levels of
Abstraction, RTC Magazine September, 2004.

http://www.rtcmagazine.com/home/article.php?id=100125&pg=1

[2] Jiri Gaisler: “Fault-tolerant Microprocessors for Space
Applications”, 5: page 41, Gaisler Research AB, Sweden

http://www.gaisler.com/doc/vhdl2proc.pdf

[3] Thermocouple Simulation with CompactRIO, National
Instruments White Paper.

http://zone.ni.com/devzone/cda/tut/p/id/4310

[4] Simulating an AC LVDT with the NI PXI-7831R
Reconfigurable I/O Device, National Instruments White
Paper.

http://zone.ni.com/devzone/cda/tut/p/id/4101

[5] Resolvers, National Instruments White Paper.

http://zone.ni.com/devzone/cda/tut/p/id/2888

9. Glossary

ADC: Analog to Digital Converter

ATE: Automated Test Equipment

COTS: Commercial of the shelf

DAC: Digital to Analog Converter

DMA: Direct Memory Access

DUT: Device Under Test

ECU: Electronic Control Unit

FIFO: First In First Out

FPGA: Field Programmable Gate Array

HDL: Hardware Definition Language

HiL: Hardware In the Loop

LabVIEW: Laboratory Virtual Instrumentation

Engineering Workbench

LVDT: Linear Variable Differential Transformer

VHDL: VHSIC Hardware Description Language

VHSIC: Very High Speed Integrated Circuit

VI: Virtual Instrument

